YEAR 12 IARTV TEST - OCTOBER 2003 CHEMISTRY - ANSWERS & SOLUTIONS

SECTIO	<u>DN A (20 marks)</u>					
1. /	A 2. B		3. A	4. D	5. D	
6.	C 7. C		8. A	9. A	10. C	
11.	B 12. C		13. A	14. A	15. D	
16.]	B 17. I)	18. C	19. B	20. D	
<u>SECTION</u> Question 1 Part A	<u>B</u> (13 marks)					
(a) And	ode positive, catho	ode negative,	electron flow fr	om anode to cathode.	(*)(*)(*)	
(b) (i)	$2Cl^{-}(1) - Cl_{2}(g) + 2e$	-			(*)	
(ii)	$Mg^{2+}(l) + 2e^{-}Mg$	(1)			(*)	
(c) (i)	If aqueous mag	nesium chlor	ide were used th	e reaction above would	d not occur	
	H ₂ O is a strong discharged.	er oxidant tha	n Mg ²⁺ ions and	d would be preferentia	lly (*)	
(ii) The	(ii) The products will react spontaneously to produce MgCl ₂ .					
<u>Part B</u>						
(a)Q=It	= 2.0/1000 x30x2	24x60x60=51	84C		(*)	
	n(e-) = Q/F = 5	184/96500 = ().054 mol		(*)	
	$n(Zn) = 1/2 \times n($	(e-) = 0.027 m	ol			
	$m(Zn) = n \ge M$	= 0.0269 x 65	6.4 = 1.8 g		(*)	
(b) (i) A	Anode O_2 , H^+	Cathode Ag	g		(*)	
	(ii) Anode I ₂	Cathode H ₂	2, OH ⁻		(*)	
	(iii) Anode Br ₂	Cathod	le Cu		(*)	
Question 2	(7 marks)					
(a) Stage	I nuclear to therm	nal.				
	Stage II thermal to	o kinetic.			(*)(*)	
	Stage III kinetic to	o mechanical.				
(b) Any t	wo of. Large acce	ssible reserve	s of coal are ava	ilable.		
(Coal is comparativ	vely inexpens	ive.			
]	Does not require h	nandling of ra	dioactive substar	ices.	(*)(
(c) Any ty	wo of: Produces la	arge quantitie	s of greenhouse ;	gases		
]	Environmental da Thermal pollutant	mage caused	by mining proces	sses.		
]	Produce pollutant	s that cause ac	id rain and parti	culate matter	(*)(

Page 2 of 3

Question 3 (8 marks)

(a)	$C_F = E/\Delta T = VIt/\Delta T = (5.00 \text{ x } 5.10 \text{ x } 1.02 \text{ x } 60)/(21.202 \text{ - } 20.514) = 2.27 \text{ x } 10^3 \text{ J}^{\circ}\text{C}^{-1}$	(*)(*)
(b)	$E = CF x \Delta T = 2.27 x 10^3 x (20.514 - 17.234)$	(*)
	=7.44 x103J=7.44 kJ	
(c)	Energy content = $7.44/0.298 = 25.0 \text{ kJ/g}$	(*)

(d)	Any of: lacks minerals, vitamins, carbohydrates, fibre, essential amino acids, essential fatty acids	(*)
(e)	(F) x $37 / 100 + (100 - F) x 17 / 100 = 24.9$	(*)(*)
	1700 - 17 F + 37 F = 2490 20 F = 2500 - 1700	
	F = 40% so Protofat has 40% fat content.	(*)

Question 4 (8 marks)

(a)	Any NHCO linkage.	(*)
(b)	Peptide or amide linkage.	(*)
(c)	Any hydrogen atom attached to an N or O atom.	(*)
(d)	3	(*)
(e)	Enzyme.	(*)

Question 5 (5 marks)

(a) $C_6 H_{12} O_6$ (*)

(c)
$$NH_4^+$$
, NO_2^- , NO_3^- (*)

(e) Structural formula of glycerol. (*)

Question 6 (9 marks)

(a) One mark per point. Transition metals have stronger bonds between cations because the atoms are smaller in size than group 1 metals. This is due to a greater nuclear core charge in (*)(*) transition metals. This draws the valence electrons inwards.

(c) (i) $1s^22s^22p^63s^23p^63d^54s^2$ or other excited state.

(ii) $1s^2 2s^2 2p^3 3s^1$ (*)

(*)

(iv) Electrons in the 3d and 4s subshells have similar energies. Electrons in both subshells can be lost to form ions with different oxidation states.

Question 7 (4 marks)

(a) Atomic size decreases.

- Ionizatin energy increase.
- Electronegativity increases.
- Metallic character decreases.
- First ionization energy increases.
- Oxidising strength increases
- Explanation increasing core charge attracts electrons more strongly.s

(i) $Na_2O(s) + 2HNO_3(aq) \longrightarrow 2NaNO_3(aq) + H_2O(l)$

(ii) $2Al_2O_3(s) + 6HNO_3(aq) \longrightarrow 2Al(NO_3)_3(aq) + 3H_2O(l)$

Question 8

- (a) hydrogen undergoes nuclear fusion to form helium atoms and is consumed(*)
- (b) light observed from telescope is passed through a prism and the absorption spectra analysed. (*)
- (c) our sun is too small a star to reach the temperatures required to produce the range of elements found on earth.