

THE SCHOOL FOR EXCELLENCE

UNIT 4 MATHEMATICAL METHODS 2006 COMPLIMENTARY WRITTEN EXAMINATION 1 - SOLUTIONS

QUESTION 1

a. (i) Divide 3x+1 into $3x^4+4x^3-14x^2-20x-5$ using either synthetic or polynomial long division and get a remainder of zero:

$$\begin{array}{r}
x^3 + x^2 - 5x - 5 \\
3x + 1 \overline{\smash)3x^4 + 4x^3 - 14x^2 - 20x - 5} \\
\underline{3x^4 + x^3} \\
3x^3 - 14x^2 - 20x - 5 \\
\underline{3x^3 + x^2} \\
-15x^2 - 20x - 5 \\
\underline{-15x^2 - 5x} \\
-15x - 5 \\
\underline{-15x - 5} \\
0
\end{array}$$

(ii) It follows from (i) that:

$$p(x) = 3x^4 + 4x^3 - 14x^2 - 20x - 5 = (3x+1)(x^3 + x^2 - 5x - 5)$$
.

- **b.** (i) Using trial and error it is readily found that q(-1) = 0. It follows that x (-1) = x + 1 is a factor of q(x).
 - (ii) Divide x + 1 into $q(x) = x^3 + x^2 5x 5$ using either synthetic or polynomial long division to get:

$$q(x) = x^3 + x^2 - 5x - 5 = (x+1)(x^2 - 5)$$

Use difference of two squares formula:

$$=(x+1)(x-\sqrt{5})(x+\sqrt{5}).$$

Therefore: $p(x) = (3x+1)q(x) = (3x+1)(x+1)(x-\sqrt{5})(x+\sqrt{5})$.

a. By definition:
$$\int_{0}^{b} ax \, dx = 1.$$

Therefore:
$$\frac{a}{2} \left[x^2 \right]_0^b = 1$$

$$\therefore \frac{a}{2}b^2 = 1 \Rightarrow ab^2 = 2.$$

b. By definition:
$$\overline{X} = \int_0^b (x)ax \, dx = a \int_0^b x^2 \, dx$$
.

Therefore:
$$\overline{X} = \frac{a}{3} \left[x^3 \right]_0^b = \frac{a}{3} b^3$$
.

c. Using the result from part (b):
$$\frac{a}{3}b^3 = 1$$
 : $ab^3 = 3$. (1)

From part (a):
$$ab^2 = 2$$
. (2)

Equation (1)/Equation (2):
$$b = \frac{3}{2}$$
.

Substitute
$$b = \frac{3}{2}$$
 into equation (2): $a\left(\frac{3}{2}\right)^2 = 2 \Rightarrow a = \frac{8}{9}$.

QUESTION 3

Substitute
$$w = 2^x$$
. Then: $2^{3x} + 2^{2x} - 2^{-x} = 1 \Leftrightarrow (2^x)^3 + (2^x)^2 - (2^x)^{-1} = 1$

$$\therefore w^3 + w^2 - w^{-1} = 1$$

Multiply both sides by
$$w$$
: $\therefore w^4 + w^3 - 1 = w \iff w^4 + w^3 - w - 1 = 0$

$$(w^4 - 1) + (w^3 - w) = 0$$

$$(w^2 - 1)(w^2 + 1) + w(w^2 - 1) = 0$$

$$(w^2 - 1)(w^2 + w + 1) = 0.$$

Use the null factor theorem:
$$w^2 + w + 1 = 0$$
 or $w^2 - 1 = 0$.

$$w^2 + w + 1 = 0$$
 has no real solution.

$$w^2 - 1 = 0 \Rightarrow w = \pm 1$$
.

Back-substitute
$$w = 2^x$$
: $2^x = \pm 1$.

$$2^x = -1$$
 has no real solution.

$$2^x = 1 \Rightarrow 2^x = 2^0 \Rightarrow x = 0$$
.

Let
$$y = f^{-1}(t)$$
. Then: $t = \frac{3y}{y^2 + 1}$ $\therefore t(y^2 + 1) = 3y$ $\therefore ty^2 - 3y + t = 0$.

Use the quadratic formula to solve for y: $y = \frac{3 \pm \sqrt{9 - 4t^2}}{2t}$.

To choose between the two potential solutions for y, use the fact that

$$f(a) = b \Rightarrow f^{-1}(b) = a$$
.

For example, since f(0) = 0 it is required that $f^{-1}(0) = 0$.

Since $\frac{3+\sqrt{9-4(0)^2}}{2(0)}$ is undefined, it follows by elimination that $y=f^{-1}(t)=\frac{3-\sqrt{9-4t^2}}{2t}$.

Note:
$$\lim_{t\to 0} \frac{3-\sqrt{9-4t^2}}{2t} = 0$$
.

QUESTION 5

a. Let
$$y = \frac{u}{v}$$
 where $u = \cos^2 x$ and $v = x$.

Then
$$\frac{dv}{dx} = 1$$
.

To find
$$\frac{du}{dx}$$
 use the **Chain Rule**:

Let
$$w = \cos x$$
 so that $u = w^2$.

Then
$$\frac{du}{dw} = 2w$$
 and $\frac{dw}{dx} = -\sin x$.

Then
$$\frac{du}{dx} = \frac{du}{dw} \times \frac{dw}{dx} = (2w)(-\sin x) = -2\cos x \sin x$$
.

From the Quotient Rule:

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{(x)(-2\cos x \sin x) - (\cos^2 x)(1)}{x^2} = \frac{-2x\sin x \cos x - \cos^2 x}{x^2}.$$

b. To find *x* -coordinate of stationary points solve $\frac{dy}{dx} = 0$:

$$\frac{dy}{dx} = \frac{-2x\sin x \cos x - \cos^2 x}{x^2} = \frac{-\cos x(2x\sin x + \cos x)}{x^2} = 0$$

Use the null factor theorem:

$$\therefore \cos x = 0 \qquad \text{or} \qquad 2x \sin x + \cos x = 0.$$

Solve for
$$x$$
: $\cos x = 0$

$$x = \frac{(2n+1)\pi}{2}$$
 where $n \in J$.

Solve for
$$y$$
: $\cos x = 0$

$$y = \frac{2(0)^2}{(2n+1)\pi} = 0$$

 $2x\sin x + \cos x = 0$

$$\therefore 2x\sin x = -\cos x$$

$$\therefore 2x \frac{\sin x}{\cos x} = -1$$

$$\therefore 2x \tan x = -1$$
.

Let the point where $y = \frac{x}{2} - 1$ is normal to $y = bx^4 + 1$ have coordinates (x_1, y_1) .

Gradient of normal to curve at (x_1, y_1) :

$$m_{\text{tangen}t} = \frac{dy}{dx} = 4bx^3$$
.

Therefore $m_{\text{tangen}t} = 4bx_1^3$ at (x_1, y_1) .

$$m_{\text{normal}} \ m_{\text{tangent}} = -1 : m_{\text{normal}} = -\frac{1}{m_{\text{tangent}}} : m_{normal} = -\frac{1}{4bx_1^3}.$$
 (1)

Gradient of line:
$$m = \frac{1}{2}$$
. (2)

Equate equations (1) and (2):
$$-\frac{1}{4bx_1^3} = \frac{1}{2} \Rightarrow 2bx_1^3 = -1$$
$$\therefore 2bx_1^3 = -1 .$$
 (3)

Since the point (x_1, y_1) lies on both the line and the curve, it follows that

$$y_1 = \frac{x_1}{2} - 1. {(4)}$$

$$y_1 = bx_1^4 + 1. (5)$$

Equate equations (4) and (5):

$$\frac{x_1}{2} - 1 = bx_1^4 + 1 : 2bx_1^4 - x_1 + 4 = 0.$$
 (6)

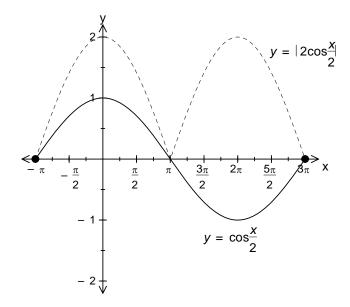
From equation (3) it follows that $2bx_1^4 = -x_1$.

Substitute
$$2bx_1^4 = -x_1$$
 into equation (6): $-x_1 - x_1 + 4 = 0$: $x_1 = 2$.

Substitute
$$x_1 = 2$$
 into equation (4): $y_1 = 0$.

Substitute
$$x_1 = 2$$
 and $y_1 = 0$ into equation (5): $0 = b(2)^4 + 1$: $b = -\frac{1}{16}$.

a. and b.



c. Note that
$$y = |2f(x)| = \left|2\cos\left(\frac{x}{2}\right)\right| = \begin{cases} 2\cos\left(\frac{x}{2}\right) & \text{for } -\pi \le x \le \pi \\ -2\cos\left(\frac{x}{2}\right) & \text{for } \pi \le x \le 3\pi \end{cases}$$

Therefore:

Area =
$$\int_{-\pi}^{\pi} 2\cos\left(\frac{x}{2}\right) - \cos\left(\frac{x}{2}\right) dx + \int_{\pi}^{3\pi} - 2\cos\left(\frac{x}{2}\right) - \cos\left(\frac{x}{2}\right) dx$$

= $\int_{-\pi}^{\pi} \cos\left(\frac{x}{2}\right) dx - 3\int_{\pi}^{3\pi} \cos\left(\frac{x}{2}\right) dx$
= $2\left[\sin\left(\frac{x}{2}\right)\right]_{-\pi}^{\pi} - 6\left[\sin\left(\frac{x}{2}\right)\right]_{\pi}^{3\pi}$
= $2\left\{\sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right)\right\} - 6\left\{\sin\left(\frac{3\pi}{2}\right) - \sin\left(\frac{\pi}{2}\right)\right\} = 2\{1 - (-1)\} - 6\{-1 - 1\} = 16$.

$$g(x) = f(-2x) + 1.$$

Dilation by a scale factor of
$$\frac{1}{2}$$
 from the vertical axis.

The order in which these transformations are applied does not matter.

QUESTION 9

a. Volume of a right circular cone: $V = \frac{1}{3}\pi r^2 h$.

Semi-vertical angle of
$$45^0 \Rightarrow \tan 45^0 = \frac{r}{h} \Rightarrow r = h$$
 .

Therefore:
$$V = \frac{1}{3}\pi h^3$$
.

After 30 minutes
$$V = (30)(0 \cdot 3) = 9 \text{ m}^3$$
.

Therefore:
$$9 = \frac{1}{3}\pi h^3$$

$$h^3 = \frac{27}{\pi}$$

$$h = \frac{3}{\pi^{1/3}}$$
 meters.

b. From the chain rule: $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}.$

Given:
$$\frac{dV}{dt} = 0.3 \text{ m}^3/\text{min}.$$

From part (a):
$$V = \frac{1}{3}\pi h^3 : \frac{dV}{dh} = \pi h^2 : \frac{dh}{dV} = \frac{1}{\pi h^2}.$$

Therefore:
$$\frac{dh}{dt} = \frac{1}{\pi h^2} \times 0.3.$$

Substitute
$$t = 30$$
 minutes $\Rightarrow h = \frac{3}{\pi^{1/3}}$ meters:

$$\frac{dh}{dt} = \frac{1}{\pi \left(\frac{3}{\pi^{1/3}}\right)^2} \times 0.3 = \frac{0.3\pi^{1/3}}{9\pi} = \frac{1}{30\pi^{1/3}} \text{ m/min.}$$

Draw a tree diagram:



Pr(Living in the city in 2 years time | currently living the in country)

$$= \left(\frac{1}{7}\right)\left(\frac{9}{10}\right) + \left(\frac{6}{7}\right)\left(\frac{1}{7}\right)$$
$$= \frac{9}{70} + \frac{6}{49} = \frac{63}{490} + \frac{60}{490} = \frac{123}{490}.$$

QUESTION 11

a. By definition:
$$p + \frac{1}{7} + 3p + 3p + 4p + p = 1$$
$$\therefore 12p = \frac{6}{7}$$
$$\therefore p = \frac{1}{14}.$$

b. Conditional probability: Require $\Pr(X < 5 \mid X > 2)$.

х	1	2	3	4	5	6
$\Pr(X=x)$	p	$\frac{1}{7}$	3 <i>p</i>	3 <i>p</i>	4 <i>p</i>	p

$$\Pr(X < 4 \mid X > 2) = \frac{\Pr(X = 3) + \Pr(X = 4)}{\Pr(X = 3) + \Pr(X = 4) + \Pr(X = 5) + \Pr(X = 6)} = \frac{6p}{11p} = \frac{6}{11}.$$

BONUS QUESTION

QUESTION 12

a. Let y = uv where u = x and $v = e^{-x}$.

Then
$$\frac{du}{dx} = 1$$
 and $\frac{dv}{dx} = -e^{-x}$.

From the Product Rule: $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

$$\therefore \frac{dy}{dx} = (x)(-e^{-x}) + (e^{-x})(1) = e^{-x} - xe^{-x}.$$

b. Anti-differentiate both sides of $\frac{dy}{dx} = e^{-x} - xe^{-x}$ with respect to x:

$$y = \int (e^{-x} - xe^{-x}) dx$$

Substitute $y = xe^{-x}$:

$$\therefore xe^{-x} = \int e^{-x} \, dx - \int xe^{-x} \, dx = -e^{-x} - \int xe^{-x} \, dx$$

$$\therefore \int xe^{-x} dx = -xe^{-x} - e^{-x} = -(x+1)e^{-x},$$

Note: The arbitrary constant of anti-differentiation is omitted since only *an* anti-derivative is required.

c. (i) By definition: $\overline{X} = \int_{0}^{\log_e 3} (x) \frac{3}{2} e^{-x} dx = \frac{3}{2} \int_{0}^{\log_e 3} x e^{-x} dx$.

Substitute the result from part (b):

$$\overline{X} = -\frac{3}{2} \left[(x+1)e^{-x} \right]_{0}^{\log_e 3} = -\frac{3}{2} \left\{ (1 + \log_e 3)e^{-\log_e 3} - 1 \right\}$$

Use the log rule $\log_a \frac{1}{b} = -\log_a b$:

$$= \frac{3}{2} \left\{ 1 - (1 + \log_e 3) e^{\log_e \frac{1}{3}} \right\}$$

Use the log rule $a^{\log_a b} = b$:

$$= \frac{3}{2} \left\{ 1 - \frac{1}{3} (1 + \log_e 3) \right\} = 1 - \frac{1}{2} \log_e 3$$

Use the log rule $c \log_a b = \log_a b^c$ and the power rule $b^{1/2} = \sqrt{b}$:

$$=1-\log_e\sqrt{3}$$
.

(ii) Let the median value of X be equal to k.

By definition: $\frac{1}{2} = \int_{0}^{k} \frac{3}{2} e^{-x} dx.$

Therefore:

$$\frac{1}{3} = \int_{0}^{k} e^{-x} dx = -\left[e^{-x}\right]_{0}^{k} = 1 - e^{-k}$$

$$\therefore \frac{2}{3} = e^{-k}$$

$$-k = \log_e \frac{2}{3}$$

$$k = -\log_e \frac{2}{3} = \log_e \frac{3}{2}$$